skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Leite, Rodrigo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species. Data from Sentinel-2 optical imagery, ERA-5 climate data, SRTM-DEM imagery, and simulated GEDI data were selected for the characterization of diversity in four study areas. The integration of ancillary data can improve biodiversity metrics predictions. Random Forest (RF) regression models were suitable for estimating tree species diversity indices from remote sensing variables. From these models, we generated diversity index maps for the entire Cerrado using all GEDI data available in orbit. For all models, the structural metric Foliage Height Diversity (FHD) was selected; the Renormalized Difference Vegetation Index (RDVI) was also selected in all species diversity models. For the Shannon model, two GEDI variables were selected. Overall, the models indicated performances for species diversity ranging from (R2 = 0.24 to 0.56). In terms of RMSE%, the Shannon model had the lowest value among the diversity indices (31.98%). Our results suggested that the developed models are valuable tools for assessing species diversity in tropical savanna ecosystems, although each model can be chosen based on the objectives of a given study, the target amount of performance/error, and the availability of data. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite‐based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km2) with high spatial and spectral resolution arising from the use of new spaceborne instruments with near‐global, freely‐available data. We identified sensors at spatial resolutions suitable for fuel treatment planning, featuring: lidar data for characterizing vegetation structure; hyperspectral sensors for retrieving chemical compounds and species composition; and dense time series derived from multispectral and synthetic aperture radar sensors for mapping phenology and moisture dynamics. We also highlight future hyperspectral and radar missions that will deliver valuable and complementary information for a new era of fuel load characterization from space. The data volume that is being generated may still challenge the usability by a diverse group of stakeholders. Seamless cyberinfrastructure and community engagement are paramount to guarantee the use of these cutting‐edge datasets for fuel monitoring and wildland fire management across the world. 
    more » « less
  4. Land-use land-cover (LULC) change is one of the most important anthropogenic threats to biodiversity and ecosystems integrity. As a result, the systematic generation of annual regional, national, and global LULC map products derived from the classification of satellite imagery data have become critical inputs for multiple scientific disciplines. The importance of quantifying pixel-level uncertainty to improve the robustness of downstream analyses has long been acknowledged but this practice is still not widely adopted in the generation of these LULC products. The lack of uncertainty quantification is likely due to the fact that most approaches that have been put forward for this task are too computationally intensive for large-scale analysis (e.g., bootstrapping). In this article, we describe how conformal statistics can be used to quantify pixel-level uncertainty in a way that is not computationally intensive, is statistically rigorous despite relying on few assumptions, and can be used together with any classification algorithm that produces class probabilities. Our simulation results show how the size of the predictive sets created by conformal statistics can be used as an indicator of classification uncertainty at the pixel level. Our analysis based on data from the Brazilian Amazon reveals that both forest and water have high certainty whereas pasture and the “natural (other)” category have substantial uncertainty. This information can guide additional ground-truth data collection and the resulting raster combining the LULC classification with the uncertainty results can be used to communicate in a transparent way to downstream users which classified pixels have high or low uncertainty. Given the importance of systematic LULC maps and uncertainty quantification, we believe that this approach will find wide use in the remote sensing community. 
    more » « less
  5. Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tree species diversity in local communities, which remains to be tested at the global scale. To address this gap, we analyzed global forest inventory data and revealed that the relationship between tree species richness and EcM tree proportion varied along environmental gradients. Specifically, the relationship is more negative at low latitudes and in moist conditions but is unimodal at high latitudes and in arid conditions. The negative association of EcM tree proportion on species diversity at low latitudes and in humid conditions is likely due to more negative plant-soil microbial interactions in these regions. These findings extend our knowledge on the mechanisms shaping global patterns in plant species diversity from a belowground view. 
    more » « less
    Free, publicly-accessible full text available June 13, 2026